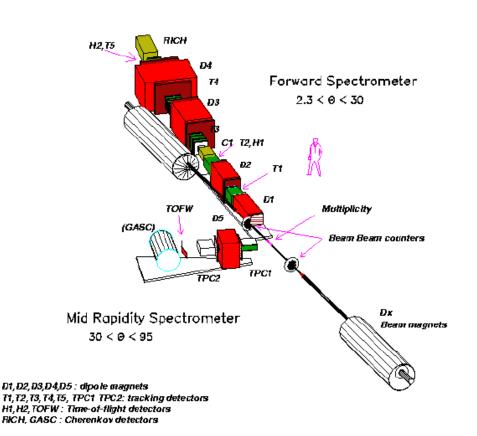
Recent Results from BRAHMS experiment at RHIC

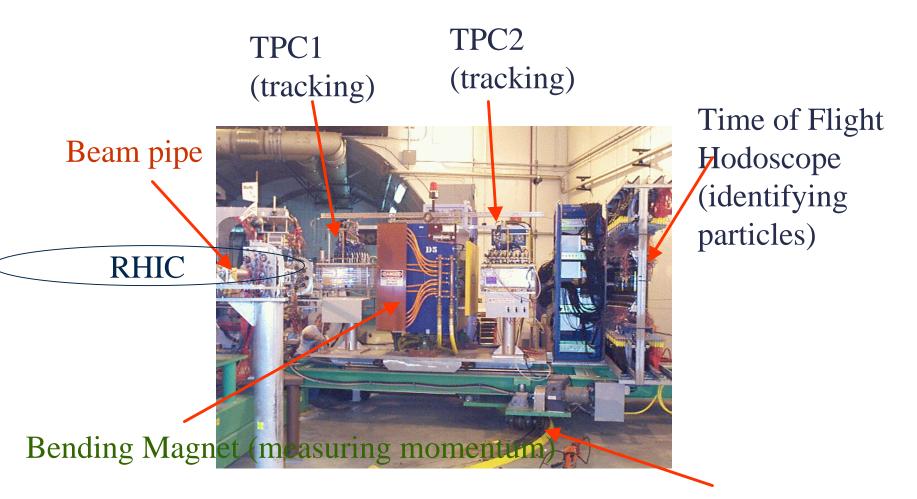

J.H. Lee
BNL
for BRAHMS Collaboration

Workshop on Thermalization and Chemical Equilibration in Heavy Ions Collisions at RHIC BNL, July 20, 2001

BRAHMS

Broad RAnge Hadron Magnetic Spectrometer

- → Measures Charged Hadrons over a Wide Angular and Large Momentum Range with High Precision
- → 2 Movable Spectrometers (Mid-rapidity Spectrometer and Forward Spectrometer)
- → Centrality Detectors: Tiles, Silicon Strips, Beam-Beam counters, Zero-degree Calorimeters
- → Collaboration of ~55Physicists from 11 institutions


BRAHMS Collaboration

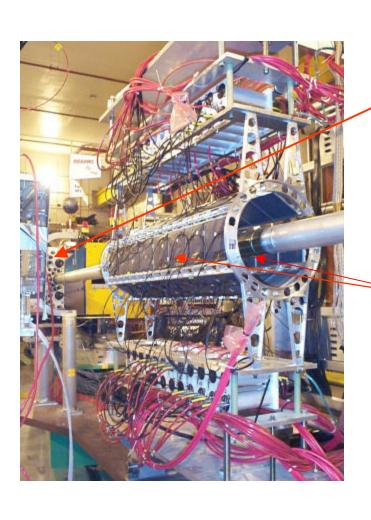
Brookhaven National Laboratory, USA¹ Fysisk Institutt, University of Oslo Norway² IReS, Université Louis Pasteur, Strasbourg, France³ Jagellonian University, Cracow, Poland⁴ Johns Hopkins University, Baltimore, USA⁵ New York University, USA⁶ Niels Bohr Institute, University of Copenhagen, Denmark⁷ Texas A&M University, College Station. USA⁸ University of Bucharest, Romania⁹ University of Kansas, USA¹⁰ University of Bergen, Norway¹¹

I.G. Bearden7, D. Beavis1, Y. Blyakhman6, J.Brzychczyk, B. Budick6, H. Bøggild7, C. Chasman1, P. Christiansen7, J.Cibor, R.Debbe1, J. J. Gaardhøje7, K.Grotowski, J. I. Jordre10, F. Jundt3, K. Hagel11, O. Hansen7, H.Heiselberg, A. Holm7, C. Holm7, A.K. Holme2, H. Ito9, E. Jacobsen7, A. Jipa8, C. E. Jørgensen7, E. J. Kim5, T.Kreutgel, T. Kozik4T, T.M.Larsen, J. H. Lee1, Y. K.Lee5, G. Løvhøjden2, Z. Majka4, A. Makeev11, B. McBreen1, M. Murray11, J. Natowitz11, B.S.Nielsen7, K. Olchanski1, D. Ouerdane7, R.Planeta. F. Rami3, D. Roerich10, B. Samset2, S. Sanders9, R.A.Scheetz1, I. S. Sgura8, Z.Sosin, P. Stazel4, 7, T.S. Tveter2, F. Videbæk1, R. Wada11 and A. Wieloch

Mid-rapidity Spectrometer

(rotates 30°-95°)

Rail (for moving spectrometer)


Forward Spectrometer

(rotates 2.5°-30°)

- ~20 m long
- TPC's: T1 and T2
- DC's: T3,T4,T5
- Magnets: D1,D2,D3,D4
- ToF Hodoscopes: H1, H2
- Cerenkov Counter: C1
- RICH

Global Detectors

- Beam-Beam Counters
 - Provide a start time and on-line trigger
 - Measure multiplicity at high η (2.1 < $|\eta|$ < 4.7)
- Multiplicity Detectors(Tile and Si Arrays)
 - Provide charged particle multiplicity $(-3 < \eta < 3)$
 - Used to characterize centralities of events
- Zero Degree Calorimeters

BRAMS Physics Goals

Probing Hot and Dense Nuclear Matter at RHIC by studying

- **■** Reaction Mechanism and dynamics
- **#** Baryon Stopping
- **■** Particle productions

Through measurements of

■ Identified hadrons over wide range of rapidity, 0 < |y| < 4 and $0.2 < p_t < \sim 4 \text{GeV}/c$ vs collision centrality with high precision.

First year run only covers a small part of the landscape.

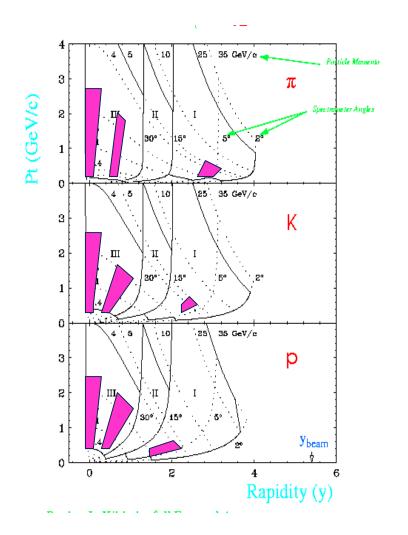
Summary of BRAHMS data from the first year ('00) running

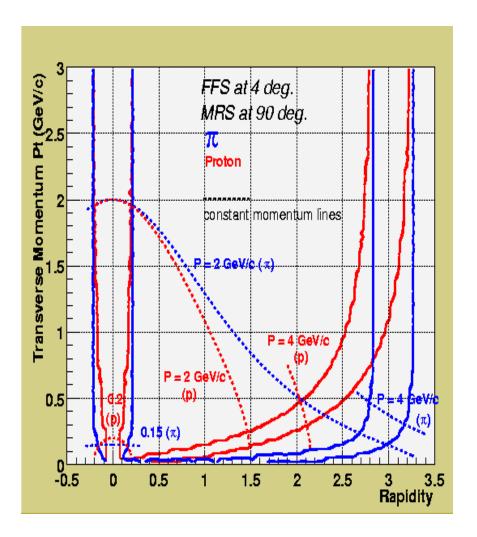
Data

- \Rightarrow Au+Au at $\sqrt{s_{nn}} = 130 \text{ GeV}$
- **■** Limited luminosity (<10% of designed) with wide collision vertex distribution (σ~65cm)
- **■** Selected Spectrometer settings (MRS at 90°,40° FS at 4°)

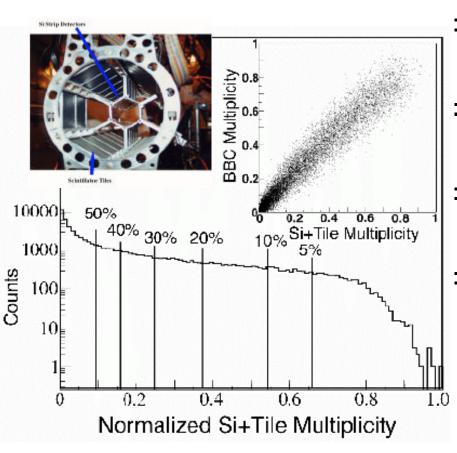
Measurements

- Charged Particle Multiplicity (dN/dη)
- **#** Hadron Yields
- \blacksquare Particle/anti-particle Ratios (π , K, p)

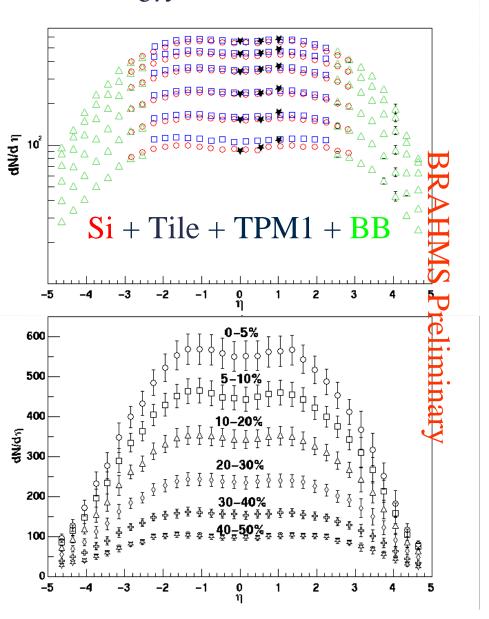

BRAHMS Publications


- "Rapidity dependence of anti-proton to proton ratios in Au+Au collisions at $\sqrt{s_{nn}} = 130 \text{ GeV}$ "
 - Accepted for publication in PRL: nucl-ex/0106011
- "Charged particle densities from Au+Au Collisions at $\sqrt{s_{nn}} = 130 \text{ GeV}$ "

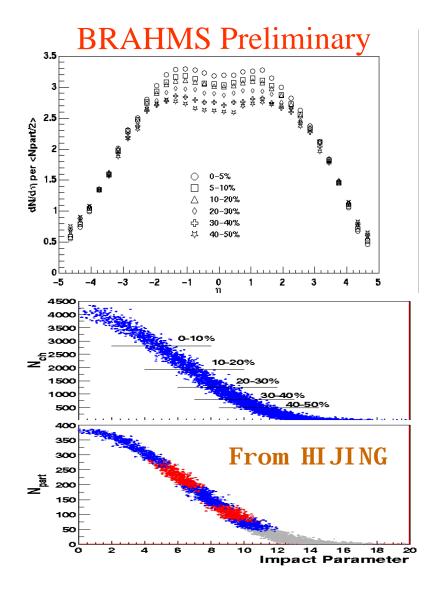
Will be submitted to PLB


■ More information in http://www.rhic.bnl.gov/brahms

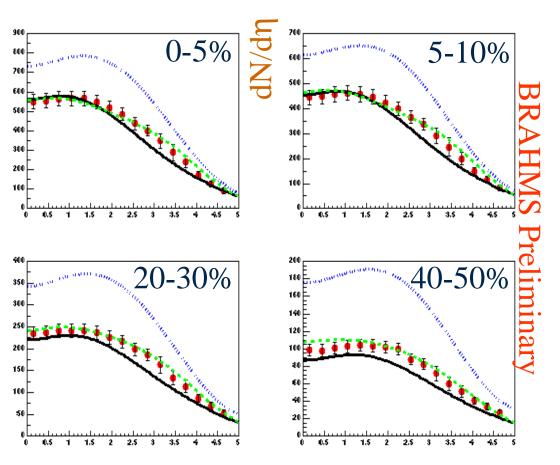
BRAHMS acceptance (August 2000)



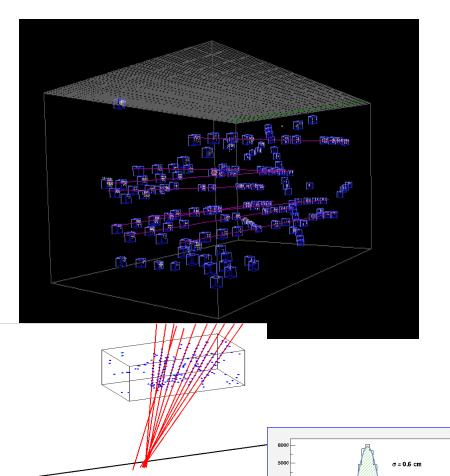
Collision Centrality Determination


- Measured by the Centrality Detector (Si+Tile)
- **♯** Corrected for Vertex position dependence
- ★ Minimum-biased multiplicity:
 Data + MC (HIJING+GEANT)
- BB Multiplicity is used for the centrality determination for BB analysis (consistent with Si+Tile selections)

dN_{ch}/dη measurement


- Using
 Si+Tile+TPM1+BB
- **♯** Centrality Cut: Si+Tile and BB
- $= -4.7 < \eta < 4.7$
- **■** Most Central (0-5%)
 - $dN/d\eta = 549 \pm 1 \pm 35$ at $y \approx 0$
 - $\int N_{ch} d\eta = 3855 \pm 297$ for $|\eta| < 4.7$

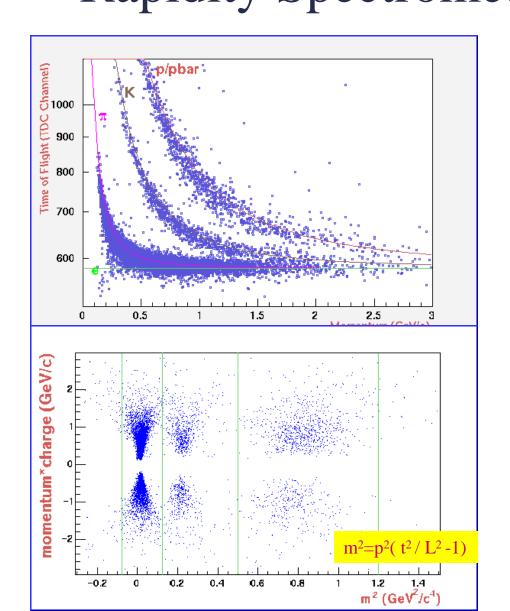
N_{ch} vs. participant nucleon pairs

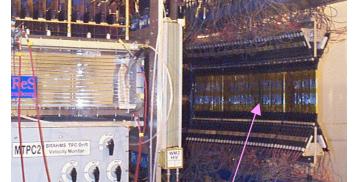

- □ dN/dη ~ 3.2 per participant nucleon pair at η=0 for central (0-5%); <N_{part}>=346 □ Enhancement of particle production for central collisions at mid-rapidity
- \blacksquare At high rapidities ($\eta > 3$) particle production scales with N_{part}

dN_{ch}/dη and Model Predictions

- **♯** HIJING: good agreements at midrapidity
- \blacksquare AMPT: good agreements in Δη
- **♯** UrQMD: reproduce shape well

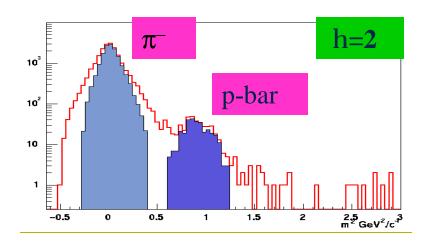
Track Reconstruction

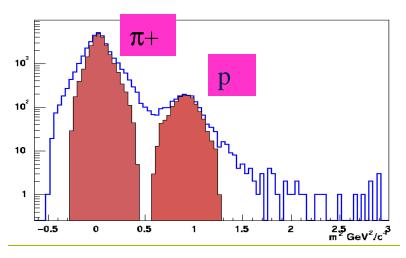


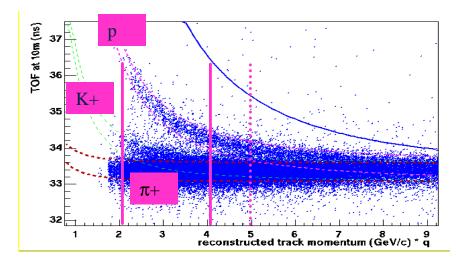

Vertexing

- **Tracking:** 2 TPC's
- Track selection: tracks from production verticesconsistent with global vertex in x and y
- Momentum determination: from matching angle in the bending magnet

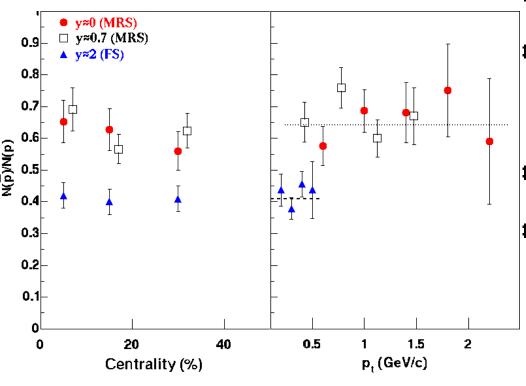
Vertex y-matching


Particle Identification in Mid-Rapidity Spectrometer



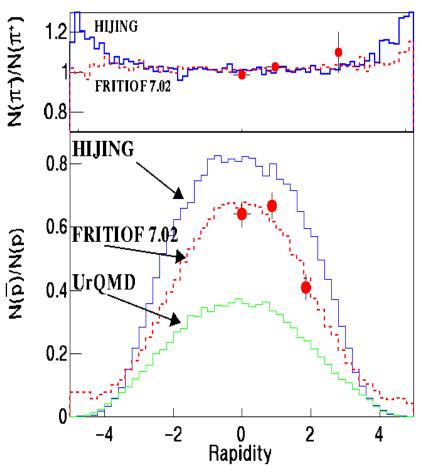

- Using Time of Flight Hodoscope
- Proton and K,π separation up to ~ 2.5 GeV/c
- **\blacksquare** K and π separation $\sim 1.5 \text{ GeV}/c$
- **■** Electron and muon "contamination" in π < 2 %

Particle Identification in FS



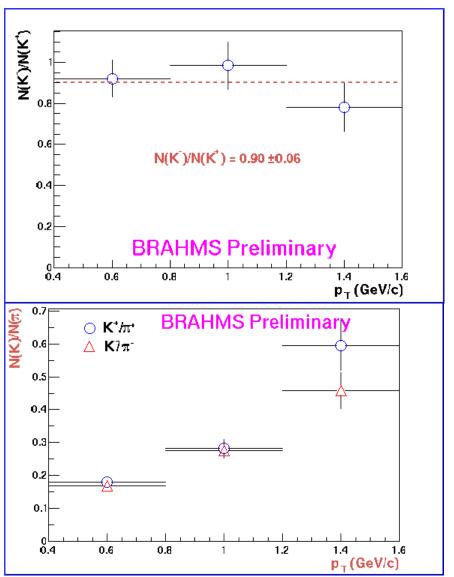
- More difficult due to background, higher momentum, path length determination
- Cerenkov Detectors (C1 and RICH) and a secondary ToF counter (H2) will identify higher momentum (up to 25 GeV) in '01 run

N(pbar)/N(p) ratio

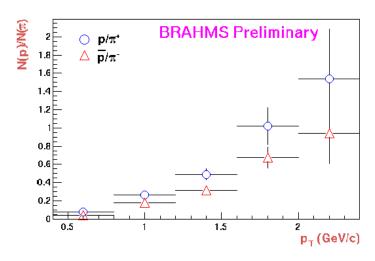

$$0.64 \pm 0.04 \pm 0.06$$
 at y ~ 0
 $0.66 \pm 0.03 \pm 0.06$ at y ~ 0.7
 $0.41 \pm 0.04 \pm 0.06$ at y ~ 2
for 0 - 40% central

Acceptance and most of the systematic differences "cancel out"

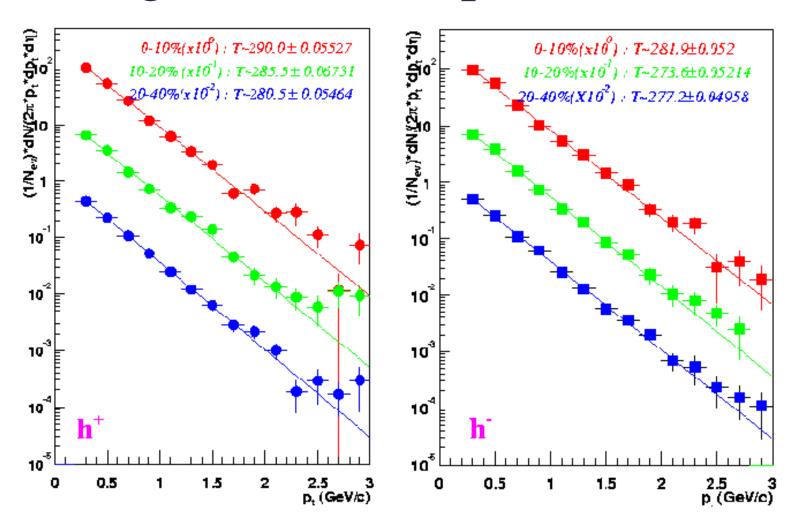
Antiproton absorbtion correction to pbar/p ratio:


- 5 % for FS at 4 deg
- 2 % for MRS at 90, 40 deg
- 10% corr. (low pt) p from secondary interactions
- Most pbar and p from **Hyperon decays** fall into spectrometer acceptance.
 - Correction factor depends on H/B, H-bar/B-bar
 - For H/B < 0.5 systematic correction is $< \pm 5\%$ on ratio
 - Model dependent ⇒ not applied to data
- No strong centrality and pt dependence observed

N(pbar)/N(p) and Models



- **\blacksquare** Near constant (≈ 0.65) at |y| < 0.7
- Drops fast between y = 1 and 2 faster than at SPS energy $(\sqrt{s_{NN}} = 17 \text{ GeV})$ similar as pp $(\sqrt{s_{NN}} = 63 \text{ GeV})$
- More baryons than HIJING prediction for |y| <2
- **♯** Good agreements with FRITIOF


More Ratios (at $y \approx 0$)

- **4** 0-40% central
- $N(K^-)/N(K^+) = 0.90\pm0.06$
- $N(K)/N(\pi)$: 0.2 0.5 increase with p_t
- **■** N(p)/N(π) 0.1 1.4 pbar(p) > $\pi^{-}(\pi^{+})$ "anomaly"? for p_t>2 GeV/c (nucl-th/104066)

Charged Hadron Spectra

BRAHMS Preliminary

Summary

The first year of RHIC running, Au+Au at $\sqrt{s_{nn}} = 130$ GeV has yield a first set of good quality data. BRAHMS measured charged particle multiplicities and particle/antiparticle ratios.

- \neq dN/d $\eta \approx 550$, (dN/d η)/(0.5*N_{part})=3.2 at y \approx 0 for central
- **♯** Enhancement of particle production for central collisions at mid-rapidity
- **■** N(pbar)/N(p): Near constant at 0.65 in |y| < 0.7 and 0.41 at $y \approx 2$
- $> N(K^-)/N(K^+) = 0.9$ and $N(p)/N(\pi) > 1$ at $p_t > 2$ GeV/c
- **■** Models describe data partially

BRAHMS: Ready to Play A Main Program in 2001 Run

Systematic Survey of identified particle spectra and yields as functions of Rapidity (0<y<4), pt (<1.3 GeV/c) ("Soft"Physics) and Multiplicity (dN/d η) measurements in Full RHIC energy Au+Au at $\sqrt{s_{nn}}$ =200GeV

High p_t (1-4 GeV/c) ("Hard" Physics) and HBT measurements at selected rapidities And More.

Investigate pp physics

STAY TUNED!